

Swathbuckler: HPC Processing and Information
Exploitation

Scot Tucker, Robert Vienneau

Advanced Engineering & Sciences
 ITT Industries

 Rome, NY
 Scot.Tucker@rl.af.mil, Robert.Vienneau@itt.com

Joshua Corner, Richard W. Linderman
Information Directorate

Air Force Research Laboratory, USAF
 Rome, NY

 {cornerj, lindermanr}@rl.af.mil

Abstract—This real-time system recorded raw returns and
processed continuous strip-map, high-resolution (< 1m), wide-
swath (37 km) imagery on-board the Convair 580 aircraft with
an embedded high performance computing system costing
under $100K. The SAR image formation algorithm was
optimized at all levels of the computer architecture to achieve
real-time processing over 9000 times faster than the original
algorithm specification. The information management system
implemented a pub-sub-query environment to allow real-time
offboard exploitation of the on-board multi-terabyte database
within seconds. Real-time SAR image formation was
demonstrated on five flight tests. The completed flights
provided 7.3 terabytes of raw and processed imagery to
support future algorithm research.

I. INTRODUCTION
The Swathbuckler experiment is an effort to develop and

demonstrate wide-swath, high resolution, real-time strip map
SAR image formation. The program was conducted under
the auspices of the signal/image processing panel of The
Technical Cooperation Program (TTCP) which involves the
defense research organizations of the US, UK, Canada, and
Australia [1]. Following lab and aircraft integration
activities, the Swathbuckler demonstration culminated in five
flights in Ontario, Canada during the fall of 2005. During
the flights, the aircraft flew hexagons with 40 km sides with
the radar looking inward, as shown in Fig. 1. Each leg
produced roughly a 40 km wide x 37 km deep imaged strip
20 to 57 km from the aircraft which overlapped with the
imaged areas of the other legs. While Swathbuckler covers
many technical areas, the focus of this paper is the embedded
high performance computing and information exploitation.
Three other papers deal with the system architecture [2],
processing front-end [3], and radar system [4].

Some of the most difficult challenges for this experiment
involved meeting the real-time requirements for embedded
signal/image processing and devising a means to exploit the
data both on-board and offboard the aircraft. The SAR
processing algorithm was provided by Defense Research and
Development Canada - Ottawa. It was implemented using

the MATLAB® signal processing environment and could
process 60k range lines of 16384 points into imagery using
16k azimuth blocks in 12.5 hours time. To run in real-time,
processing had to be measured not in hours but tens of
seconds. AFRL and ITT Industries, Advanced Engineering
& Sciences Division, implemented the MATLAB® image
formation algorithm in C++ and optimized it for the High
Performance Computing (HPC) platform on 24 backend dual
Xeon nodes. AFRL also developed the information
management system both for the embedded system and the
data repository using the Joint Battlespace Infosphere (JBI)
framework [5]—a grid-based pub-sub-query information
management environment.

II. OBJECTIVES
Three objectives drove the design of the Swathbuckler

processing system. These objectives have an interlinked
dependency on each other.

Figure 1. Ottawa, Ontario Hexagon Flight Pattern

7100-7803-9497-6/06/$20.00 © 2006 IEEE.

Authorized licensed use limited to: ITT Corporation. Downloaded on March 14,2010 at 10:15:12 EDT from IEEE Xplore. Restrictions apply.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2006 2. REPORT TYPE

3. DATES COVERED
 00-00-2006 to 00-00-2006

4. TITLE AND SUBTITLE
Swathbuckler: HPC Processing and Information Exploitation

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Advanced Engineering & Sciences,ITT Industries,Rome ,NY

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
2006 IEEE Radar Conference, held in Verona, NY on April 24-27, 2006

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

8

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

A. Real-time Stripmap SAR Processing
Two attributes of this objective are affordable and real-

time. Affordability improves the ability to transition the
technology by both decreasing cost and also complexity of
the solution by aggressively leveraging commercial
technology advances. The objective was to demonstrate that
well understood cluster computing technology costing less
than $100K could do the job.

The real-time aspect has significant implications on the
computational design because the complex SAR processing
had to be done within a time limit on-board a resource
constrained aircraft. For example, the power limit was 8 kW
and the chassis had to fit in two shortened racks onboard the
aircraft. The goal here was to produce imagery across a
swath width 40 km as fast as possible. The goal PRF value
of 800 translates into processing SAR imagery at 6 km2 /sec.
However, since the PRF was slaved to aircraft velocity this
was a primary control available to adjust the processing rate.

B. Image Exploitation
Once the imagery has been processed there is great value

in having secure fast custom access to the imagery. Thus the
images had to be accessed easily and quickly both onboard
and offboard the aircraft. Remote users had to be made
aware of newly created images and be able to query the
imagery database onboard the aircraft by their custom-
defined parameters. The goal was to support this
exploitation with latency of seconds—not minutes.

C. Real-time Data Recording
Post-demonstration analysis and continued algorithm

research motivated the storage of both the raw image returns
and processed imagery. The raw data supports post-
processing using new algorithm configurations. Note that
the recording of processed data to an onboard database is
implied by the exploitation objective. Both sets of data are
real-time flows and must be captured to disk without falling
behind.

III. APPROACH
To achieve real-time SAR image formation across a wide

swath it was important to maximize the performance of the
processing architecture. The approach developed from
estimation of processing potential, to distribution of the data,
communication overhead, influence of aircraft and radar
variables, process distribution, memory management,
optimization, data storage and finally the exploitation
approach.

A. Comparing Peak to Required Performance
Dual Xeon processors in 1U rack-mountable format are

widely used in business as web servers, but for $2K-$3K
also can provide considerable signal processing. Each 3.2
GHz Xeon processor features a peak performance of 12.8
billion single precision FLoating-point OPerations per

Second (FLOPS). Twenty four dual nodes have a peak of
614 billion FLOPS (GFLOPS).

Analysis determined the stressing parts of the algorithm
to be the FFT and Inverse FFT operations for compression in
the range and azimuth directions, motion compensation,
Range Cell Migration Correction (RCMC) and auto
focusing. At 800 Hz PRF, these tasks amount to sustaining
approximately 100 GFLOPS which is 26% of peak. Based
on FFT benchmarks, this seemed achievable.

Another stressing condition was introduced by memory
limitations from the corner turning operations and memory
management of the required memory address space for each
process—limited to around 3 GB on the 32 bit Xeon
architectures. However, by mapping shared memory blocks
into the 3 GB process space, larger memory could be tapped,
albeit as sequential overlays of process memory.

The basic approach to processing the SAR imagery in
parallel was to divide the swath width (40 km) into 24
subswaths about 1.5 km each. Each subswath holds 16384
points in range, about 10000 of which are “new”, the rest are
overlapped with the adjacent node to support overlap-save
range compression. Thus the node 1 would process the
range closest to the aircraft and node 24 would process the
range lines furthest from the aircraft.

An important attribute of the processing is that the
azimuth compression work gets harder at further ranges
because the length of the azimuth filter increases and so the
overlap regions (which are thrown away) increase. This
motivates going to larger azimuth FFTs at further ranges to
make more headway in the presence of the overlap
inefficiency. In this case, 16K azimuth FFTs are used for the
first 8 range subswaths and 32K FFTs are used for the
remaining 16 subswaths as shown in Fig. 2.

B. Radar Data Input
Another key challenge to achieving a simple and

affordable solution was converting raw A/D input data into
packetized information objects with headers in a form
communicable to the COTS dual Xeon processing nodes.
These nodes featured dual Gigabit Ethernet links, so one was
devoted to the real-time inputs while the other provided the
normal cluster networking. An FPGA at the A/D front-end
solved this interfacing problem efficiently. It converted the
A/D data into separate UDP packets steered toward each of
the 24 nodes, replicated the data for range overlaps, attached
headers, and optionally also performed IF to baseband
downconversion as discussed in [3].

C. Communication Overhead
Using the overlap-save method to break the range

compression across the wide swath into several subswaths
introduces a communications overhead proportional to the
range pulse compression ratio. The replication of data could
be accomplished either by the FPGA or by message passing
amongst the cluster nodes. In this case, the FPGA-side did
the replicating using the high capacity of the gigabit

711

Authorized licensed use limited to: ITT Corporation. Downloaded on March 14,2010 at 10:15:12 EDT from IEEE Xplore. Restrictions apply.

Direction of Flight
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

End of Leg

Compute Node
Number

S
w

at
h

W
id

th
 (4

0k
m

)

Block Size

16k
32k

Direction of Flight
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

End of Leg

Compute Node
Number

1
2
3
4
5
6
7
8
9
1010
1111
1212
1313
14
15
16
1717
18
19
20
21
22
23
24

End of Leg

Compute Node
Number

S
w

at
h

W
id

th
 (4

0k
m

)

Block Size

16k
32k
16k16k
32k32k

Ethernet, and this allowed the heavily tasked cluster nodes to
be spared the extra work of inter-node communications.

There is a data dependency inherent in the SAR
algorithm--the range processing precedes the azimuth
processing. Thus, the intermediate data structure needs to be
passed between these processes. Because this
communication was kept local to each node, shared memory
could be used instead of slower message passing protocols.
Communications, via shared files, is however needed to get
the current aircraft position/altitude for the motion
compensation from the cluster headnode.

Even with shared memory, the corner-turning between
the two Xeons is expensive. The large cube is turned once to
perform the azimuth compression FFTs, but there was a
problem with RCMC wishing to turn back to a range
orientation and then return to azimuth orientation. This was
avoided by altering the RCMC algorithm to use cache lines
in the azimuth direction and avoid re-turning the cube.

D. Related Variables: Velocity and PRF
Real-time SAR processing depends on a number of

variables but one critical to the Swathbuckler processing
design was the PRF. Because the aircraft speed dictates the
rate at which the returns are passed to the HPC, changing the
aircraft velocity effectively changes the PRF. As the aircraft

speed increases, the PRF increases. So the PRF linearly
throttles the data rate into the processing system and thereby
the computations. To stay aloft and level, the minimum PRF
is roughly 400 PRF. Thus, the desired minimum PRF was
set at 500 and if the SAR processing lags, the system was
designed to gracefully degrade by dropping blocks of images
as buffers fill.

E. Processing Distribution and Pipeline
A logical division for a dual-processor node was to put

the range processing functions on one of the processors and
the azimuth processing on the other. The original algorithm
sequentially processed all range lines first and then processed
the azimuth lines. The implementation processes the first 16k
(or 32k) range lines then starts the second CPU azimuth
processing on that block in parallel while the first CPU
continues onto the next block of range lines. Once an image
is finished, it is immediately written to disk. Internal buffers
ensure efficient flow between the input, range, azimuth, and
writing portions. This represents a 4-stage pipeline.

F. SAR Algorithm Optimization
The original algorithm implemented in MATLAB® took

12.5 hours to process 60000 range lines of one subswath into
images. For a 500 Hz PRF which was used in the flight
tests, 500 range lines, each with 24 subswaths, are produced

Figure 2. Swathbuckler Processing Layout

712

Authorized licensed use limited to: ITT Corporation. Downloaded on March 14,2010 at 10:15:12 EDT from IEEE Xplore. Restrictions apply.

each second. This is a factor of 9022X speedup. So the
original code, though being a functional prototype, was far
from real-time. To start, the algorithm was re-targeted to a 24
node Beowulf cluster. Over time, processor clocks increased
from 2.55 GHz to 3.06 and 3.2 GHz. During the flights, eight
3.06 GHz and sixteen 3.2 GHz dual-Xeon nodes comprised
the cluster with an average of 6 gigabytes of shared memory
per node.

Using optimization tools, a series of advances were
implemented to reduce the execution time.

1) Corner Turn
This is a very expensive operation because of the large

memory latency. These Xeon microprocessors have a 2 or 3
level cache hierarchy which is critically important to
achieving good performance. The Level 2 (L2) cache sized
at 512KB on the 3.06 GHz processors, and 1 MB on the 3.2
GHz processors was especially important. The corner turn
function reads one line and then writes it back out-of-stride
to a distant part of memory—essentially performing a matrix
transpose operation. Because the corner turn moves data
outside the cache’s locality on a frequent basis, the 3+ GHz
CPU clock is effectively slowed to the speed of the front side
bus—566 MHz later increased to 800 MHz. In addition, this
already costly operation was repeated four times during the
baseline image formation task.

To work with the cache design, we changed it into a
piece wise operation that took advantage of the cache lines
which are the quanta of information moving through the
memory hierarchy. This greatly reduced time consuming
cache-misses. We reduced the number of corner turns
required by rewriting the RCMC to run across cache lines.
A final corner turn after image formation which wrote the
image out unit-stride in range was also eliminated. In the
end, the four corner turns were reduced to one.

2) Auto Load Balancing
Because of the pipeline architecture, if one CPU gets

ahead, it can share the work that may be holding up the
other. Typically, the azimuth processor was running
behind range processing throughout the optimization
effort. Therefore, the system allowed the first two steps
of the azimuth processing to be dynamically taken over
by the range processor.

G. Data Storage
The impact of storing the both the raw and processed

data led to the need for increased disk capacity for the
Coyote cluster. Maintaining the independence of each
data set allowed for quick reprocessing and data re-
distribution tasks. Each node was equipped with two
separate 200 GB hard disks—one for processed imagery
and the other for raw data. A minor price for the
continuous recording capability is that 7% of each
CPU’s time is dedicated to this data recording activity.
Using ultra mode 5 direct memory access and separate
IDE controllers the impact would have been much
worse. Special attention had to be given to data capacity

rating of the connection ribbon between the hard disk and the
motherboard. There were several occasions when the wrong
type of connection ribbon doubled the transfer times.

H. Exploitation
Meeting the exploitation objective required an

information management system that provided the desired
characteristics—custom query, remote accessibility, security,
and flexibility. We were able to leverage a development of
such a system called the Joint Battlespace Infosphere (JBI)
that had been developed by AFRL and already shared under
the Information Management panel of TTCP.

The JBI uses a publish and subscribe communication
method [5]. All communication between clients is defined in
an XML schema. This allows clients to be loosely coupled
which assists rapid prototyping and flexible systems. The
Swathbuckler user console displayed JBI publications of
cluster node status to track performance and health. This
functionality proved invaluable during integration and flight
testing.

Metadata associated with image formation, including the
locations of the image corners in lat/long, was published as
each node finished an azimuth frame. All these publications
were stored permanently. The rectangles described by image
information publications were plotted on a live map display
as shown in Fig. 3. As the aircraft flew in its hexagon
pattern, the images show up on the map at the corresponding
geo-registered location on the display. Each leg of the
hexagon is portrayed in a different color. At the time of the
photo in Fig. 3, four legs of the hexagon were complete. A
latitude and longitude position could be selected with a
mouse click which allowed the user to query the hexagonal
data for any image containing that point. With results
returned from the query, the user could then request sub-
regions of the images for viewing. These were excised from

Figure 3. Swathbuckler Moving Map Display On-board Flight 36

713

Authorized licensed use limited to: ITT Corporation. Downloaded on March 14,2010 at 10:15:12 EDT from IEEE Xplore. Restrictions apply.

the larger images per user specifications input at the console.

Security provided by the JBI implementation was crucial
for connecting the remote user to the real-time system. The
JBI uses virtual private networking with tunneling
technology to allow communication connections over
insecure networks. In the case of the Swathbuckler
demonstration, a JBI client connected from the airplane over
the internet to a JBI server at AFRL in Rome, NY allowing
other users connected to the same server to communicate and
receive information from the airplane with the same interface
as onboard the aircraft, albeit with less bandwidth for
download of imagery.

IV. IMPLEMENTATION
Designing a real-time HPC algorithm can be done in

days—implementing it takes much longer with attention to
understanding the often subtle interactions with the
computing architecture. This section details significant
events of that process. First, the overlap calculations reveals
the upper bound time limit for azimuth processing, then the
optimization chronology, the integration and flight test
challenges, and finally the challenges of integrating the JBI.

A. Real-time Deadline and Overlap
There is a hard time limit by which the SAR imagery

must be finished on each node. Since the azimuth overlap is
thrown away, and this inefficiency grows with range, the
time available for the node to complete a block (of 16K or
32K range lines) is:

 t = (azimuth block — azimuth overlap) / PRF . (1)

In general, as the processing range increases the overlap
increases. The further out in range the larger the overlap and
thus the reduction in time till the next block must be
processed. For example, the first node has to finish its block
in 45 seconds and the last node has to finish processing the
same size block in 15 seconds. At further ranges there is
more overlap, thus less forward progress, for the same size
block. This is evident on Fig. 1 where the block sizes
progressively decrease in size as range increases.

For this demonstration, the real-time requirement for
continuous processing of 16k azimuth block with PRF at 500
results in a 15 second worst case on time between blocks.
When 1 MB L2 cache became available, the inefficiency
could be cut down by as much as a factor of 1.8 on the most
critical nodes, by moving to 32k block sizes.

B. Algorithm Optimization
The azimuth processing was identified as the most time

constrained portion by the Swathbuckler code and received
the majority of the optimization effort. The first step ported
the MATLAB® code to C++ and Vector Signal Image
Processing Library++ (VSIPL++) [6] on a line-by-line and
vector-for-vector basis. This allowed for very fine grain

validation between the two codes. After initial validation, the
code was instrumented by a timing algorithm to identify the
slowest areas. The goal PRF of 800 necessitated that we
reduce this run time down to 15 seconds for a 16k block.

The following chronology shows a timeline improvement
dates, the specific computing architecture technique applied,
and the impact of the change (% reduction in execution
time):

• Aug 14, 2003 –Ported code was modified to run in
memory. Disk input/output (IO) replaced with
Random Access Memory (RAM) access. The
MATLAB® implementation created intermediate
data files, and the initial C++ implementation did
also. Intermediate data structures used to support
corner turning. (baseline)

• Aug 21, 2003 – Code modified to allow for compiler
optimization options. (44%)

• Aug 27, 2003 – Various vector processing tweaks
made. Moved VSIPL++ vector allocations out of
loops. VSIPL++ is a package providing vector and
matrix operations common in signal and image
processing. Modified the VSIPL++ implementation
to allocate memory at 32 byte-aligned addresses.
(11%)

• Aug 28, 2003 – Added vendor optimized library
functions underneath the VSIPL standard API to
support azimuth compression. Improved FFTs by
converting to the Spiral FFT
<http://www.spiral.net/> [7]. (68%)

• Aug 29, 2003 – Eliminated redundancy in main
control loops, optimized azimuth compression
multiply functions and eliminate an interpolation
step. (48%)

• Sept 2, 2003 – Added optimized cosine and sine
calculations. (3%)

• Sept 4, 2003 – Accelerated memory functions and
various minor optimizations. Eliminated
unnecessary copying of FFT data. The original C++
implementation, based on the MATLAB® version,
contained unneeded vector assignments. (13%)

• Feb 01, 2004 – System run in pipelined state, more
platform specific optimized vector operations added,
and RCMC done out of stride removing two corner
turns. Bypassed corner turns, where feasible. The
corner turns between range and azimuth processing
and before and after RCMC are not bypassed.
Implemented load balancing between range and
azimuth processing. Corner turning between range
and azimuth processing is part of range processing.
If the range processor is waiting for the azimuth
processor, the range processor performs the first
FFTs in azimuth processing. (52%)

714

Authorized licensed use limited to: ITT Corporation. Downloaded on March 14,2010 at 10:15:12 EDT from IEEE Xplore. Restrictions apply.

Azimuth Processing

135 43 25 15

4050

2267

333 281
99 49 37

2007

641

322

71

Aug 1
4, 0

3

Aug
 21

, 0
3

Aug 2
7, 0

3

Aug
 28

, 0
3

Aug
 29

, 0
3

Sep
 02

, 0
3

Sep
 04

, 0
3

Feb 0
1,

04

Feb 0
4,

04

Feb 2
7,

04

Mar
02,

04

Mar
10,

04

Mar
12,

04

Mar
25

, 0
4

Apr
01

, 0
5

Se
co

nd
s

pe
r B

lo
ck

Code vectorization
Intel IPP library optimization

Eliminated and optimized
RCMC cornerturns

1MB L2
cache

• Feb 04, 2004 – Corner turn optimizations. The need
for two corner turns removed by rewriting the
RCMC function to run out-of-stride and optimized to
use Intel caching architecture. This resulted in the
function running faster out-of-stride than in-stride.
(27%)

• Feb 27, 2004 – RCMC replaced with assembly level
Streaming SIMD1 Extensions (SSE) code, memory
aligned on 128 byte boundaries, azimuth
compression rewritten for speed, work around to
improve speed of spiral FFTs, and the select lines
algorithm within auto focus was optimized.
Implemented FFTs and, for example, vector math for
element-by-element multiplies with Intel
Performance Primitives. Begin expressing existing
logic in terms of vector processing. (28%)

• Mar 2, 2004 - Rest of azimuth processing
optimized by replacing the existing logic with vector
operations—the auto focus portion being the most
difficult. (31%)

• Mar 10, 2004 – Spiral FFTs replaced with Intel FFTs
because the 16K Spiral FFT exceeded the cache size
and became variable and unpredictable. (12%)

• Mar 12, 2004 – Memory movement optimized
(14%)

• Mar 25, 2004 – Various optimizations taken
advantage of new processing nodes with 1MB L3
cache (32%)

• Apr 01, 2005 – System running on new nodes with
1MB of L2 cache (40%). L2 much
more effective than L3 cache.

Fig. 4 summarizes the results of the
optimization contributions listed above in
terms of reducing the overall execution. It
highlights the most significant contributions
to the final optimized azimuth processing of
15 seconds.

C. Integration
This section begins with our optimized

code fully exercised in the lab facility at the
Canadian radar test site. Several challenges
during integration required major algorithm
modifications such as changing block sizes,
implementing circular buffering, and creative
use of the memory address space.

1) 32k Block Upgrade
During lab integration a change to the RF

envelope moved the original start and stop
swath locations 10 km further from the
aircraft. The optimized algorithm met the

1 SIMD: Single instruction stream, multiple data streams

real-time processing constraints based on a 40 km swath
starting at 10 km and ending at 50 km with respect to the
aircraft. The new range (20-60 km) led to more overlap thus
reducing the time to the next block to a 12 second deadline.

The implementation to that time would not keep up at
500 PRF for the furthest ranges so the algorithm was
changed to use 32k blocks for the furthest 16 nodes.

Two memory management problems surfaced with the
new block size.

• Stage 3 (Azimuth processing) of the pipeline now
required 3.9 gigabytes of addressable memory which
does not leave room for critical operating system
processes without causing thrashing. This is a hard
limit of the 32-bit computing architecture. Moving
to a 64-bit architecture and having the available
memory would solve it. Instead we did in-place
processing of the images thus reducing the memory
footprint back to a manageable 2.6 gigabytes.

• Shared memory is the second area that needed a
change to work with the 32k block size. The original
shared memory implementation used an address
mapping into shared memory to transfer data from
stage 2 to stage 3 to stage 4. In addition to stage 3’s
memory address space, the total node’s memory
cannot exceed the installed amount (6-8 GB). When
moving to 32k block size the total needs to be 11
gigabytes which exceeded resources. To overcome
this, a circular buffer in shared memory was used to
keep the active parts of stage 2, 3, and 4 in shared
memory requiring a total of ~7 gigabytes.

Figure 4. Azimuth Processing Reduction Timeline

715

Authorized licensed use limited to: ITT Corporation. Downloaded on March 14,2010 at 10:15:12 EDT from IEEE Xplore. Restrictions apply.

After regression testing the 32k block algorithm during
aircraft integration, a problem with FPGA preprocessing and
a desire to record IF rather than I,Q data led to a request to
take on the downconversion processing. We were able to add
that function to stage 1 of the pipeline.

2) Heterogeneous Configuration
To maintain the real-time processing, a mixture of block

sizes and memory configurations was necessary across the
embedded HPC. Even after the 32k upgrade, the last 8 nodes
in range could still not keep up with 500 PRF because the
overlaps were still too great.

Not yet mentioned was yet a different SAR parameter
that affects processing performance. It is the presum value
used in the algorithm. Changing the azimuth presum by a
factor of 2 effectively divides the block size in half. This
then increases the available processing time by sacrificing
azimuth pixel size. Thus, for the farthest 8 nodes, the
presum value was increased to 4 so those nodes could keep
up. This was acceptable because with the SAR grazing angle
at 3.5 degrees, the quality of returns is already degraded at
those distant ranges.

Tab. 1 shows the final flight configuration of the HPC’s
presum value, block size, clock rate, and memory for the
three groups of ranges from the aircraft. It was advantageous
to put the slower nodes further out with a larger presum
value because even the faster nodes with the larger block size
still infrequently dropped blocks.

TABLE I. FLIGHT TEST PROCESSING CONFIGURATION

SAR Algorithm, Memory, CPU Detail
Nodes

Presum Block Size CPU Memory

1-8 2 16k 3.2 GHz 4G

9-16 2 32k 3.2 GHz 8G

17-24 4 32k 3.06 GHz 6G

D. Exploitation
Establishing a working communications link proved to be

the hardest implementation aspect of the exploitation. By
contrast, linking the onboard and offboard JBI information
management systems was straightforward. Several flights
went by without any usable downlink bandwidth until the
radio antenna was placed on the belly of the aircraft. With
strategic placement of the ground antenna at the hexagon
center, a 100 kbits/second downlink bandwidth connection
was established over the license-free radio through the use of
a commercial LAN Bridge [8]. A remote user 300 miles
away then connected over the internet to the distributed JBI
with Kerberos authentication and received current SAR
imagery as it occurred during a flight. Through the course of
the flight several connections were severed due to the flight
path—however—the remote user was still able to continue
his subscription. Due to the loosely coupled connection
provided by JBI, the service hardly noticed drop outs.

In addition to the exploitation done through the JBI
during flight test, further real-time insight into current HPC
processing was made available to the operators onboard the
aircraft. On more than one occasion it was this tool that
provided the clues to prevent losing recorded raw/processed
data due to, for example, a malfunctioning Ethernet cable.
Being able to see the processing utilization and remaining
disk space saved flying what would otherwise be a bad
collection leg.

V. RESULTS
Three objectives were pursued and accomplished during

5 flights that occurred over Ottawa and Kingston, Ontario.
Each flight was composed of a hexagon track around a
center of interest so that each leg of the hexagon lasted about
6 minutes.

A. Real-time SAR Image Formation
The SAR image formation task was implemented on the

US HPC and flew on the Convair 580. During those flights
the sustained PRF hovered around 500. The actual flight test
swath width was 37km instead of 40km due to slightly more
overlap in range allocated for motion compensation. We
processed SAR imagery across the entire swath width
keeping up at 3.43 km2/s.

B. SAR Image Exploitation
During the last flight, remote ground personnel securely

connected through the JBI to the on-board database as it was
being populated by the real-time processing. The user saw
on his ground station within a second that a block of SAR
imagery was ready for querying. He then selected a position
inside the desired block and queried for a 100x100 pixel area
and received the corresponding imagery for the exact
longitude/latitude rectangle only 14 seconds after the request.
These returned images were smaller NITF files excised from
the large image blocks stored onboard the aircraft.

C. Real-time Data Recording
We recorded a total of 7.3 terabytes of raw and processed

imagery. This required 375 MB/sec of raw data being copied
as well as 322 MB/sec of processed imagery being written to
disk. With such high data rates, each CPU on the node had
7% utilization dedicated to writing disk data.

VI. CONCLUSION
Upon arriving at the goal of processing 37 km wide

swath SAR returns into images in real-time, an important
lesson learned is that initial performance on modern
architectures is often far below the "conventional wisdom" of
1-10% of peak derived from simply compiling code. In fact,
in this case the final performance represents approximately
20% of peak. Our "conventional wisdom" needs to be
updated to reflect the heightened sensitivities of the new
multilayer cache architectures.

716

Authorized licensed use limited to: ITT Corporation. Downloaded on March 14,2010 at 10:15:12 EDT from IEEE Xplore. Restrictions apply.

The yearly advances of processing technologies, coupled
with the ability to leverage commercial web server
technologies, make it first achievable, and second affordable
to benefit the real-time embedded radar signal processing
community in many ways. The Swathbuckler experiment
shows that by careful matching of algorithm to architecture,
the real-time production and exploitation of wide swath, high
resolution SAR imagery is one such way.

REFERENCES
[1] The Technical Cooperation Program, Sensors Group,

http://www.dtic.mil/ttcp/sen.htm, accessed September 2005.
[2] R. Linderman, “Swathbuckler: Wide Swath SAR System

Architecture,” Proceedings of the 2006 IEEE Radar Conference, in
press.

[3] S. Rouse, D. Bosworth, “Swathbuckler Wide Area SAR Processing
Front End,” Proceedings of the 2006 IEEE Radar Conference, in
press.

[4] A. Damini, C. Parry, G. E. Haslam, “Swathbuckler—Radar System
and Signal Processing,” Proceedings of the 2006 IEEE Radar
Conference, in press.

[5] R. Linderman, M. Linderman, C.S. Lin, “FPGA Acceleration of
Information Management Services, IEEE Military Applications of
Programmble Logic Devices Conference, September 2005.

[6] CodeSourcery, LLC, VSIPL++ Specification: 1.0 candidate rev C,
2005.

[7] Puschel, M. et al., “Spiral: Code Generation for DSP Transforms,”
Proceedings of the IEEE special issue on Program Generation,
Optimization, and Adaptation, Vol. 93, No. 2, Feb. 2005.

[8] Microhard Systems Inc., SpectraNT 920 Operating Manual, 900MHz
Spread Spectrum Industrial Ethernet Bridge, Rev 0.10, 19 October
2004.

717

Authorized licensed use limited to: ITT Corporation. Downloaded on March 14,2010 at 10:15:12 EDT from IEEE Xplore. Restrictions apply.

